of ENGINEERING

Word Embeddings

1/31/23

Motivation

- Core question in understanding cultural and language evolution: how do words change meaning over time?

Hamilton, William L., Jure Leskovec, and Dan Jurafsky. "Diachronic Word Embeddings Reveal Statistical Laws of
ohns Hopkins Semantic Change." Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1:

Motivation

- Can we use language analysis to identify and measure stereotypes?
- Example from last week:
- Using PMI scores, Wikipedia articles about women tend to talk personal life more
- Might we expect words like "family", and "marriage" to be women-associated?

> How can we measure "associations" between words?

How might we represent words?

"Lexical Semantics"

- Dictionary definition
- Lemma and word forms
- Senses

How might we represent words?

"Lexical Semantics"

- Dictionary definition

- Senes snonyms tor pepper/ peppered/peppering on Thesaurus com
- Senses

A sense or "concept" is the meaning component of a word.

How might we represent words?

"Lexical Semantics"

- Dictionary definition
- Lemma and word forms
- Senses
- Relationships between words or senses
- Taxonomic relationships
- Word similarity, word relatedness

Relations between words

- Synonyms have the same meanings in some or all contexts
- Couch / sofa, car / automobile
- [Note that there are no examples of perfect synonymy]
- Antonyms senses that are opposite with respect to one feature of meaning
- Dark / light, short / long, slow / fast
- [Otherwise they are very similar]
- [Antonyms can define a binary opposition or be at opposite ends of a scale]

Relations between words

- Hypernym / Hyponym (superordinate / subordinate)
- One sense is a hyponym of another if the first sense is more specific, denoting a subclass of the other

How might we represent words?

"Lexical Semantics"

- Dictionary definition
- Lemma and word forms
- Senses
- Relationships between words or senses
- Taxonomic relationships
- Word similarity, word relatedness

Annotated Resources for Lexical Semantics

 WordNet Search - 3.1

 WordNet Search - 3.1

 - WordNet home page - Glossary - Help

 - WordNet home page - Glossary - Help}

- https://wordnet.princeton.edu/
- (python packages)

Word to search for: pepper Search WordNet
Display Options: (Select option to change) \checkmark Change
Key: "S:" = Show Synset (semantic) relations, "W:" = Show Word (lexical) relations Display options for sense: (gloss) "an example sentence"

Noun

- S: (n) pepper, common pepper, black pepper, white pepper, Madagascar pepper, Piper nigrum (climber having dark red berries (peppercorns) when fully ripe; southern India and Sri Lanka; naturalized in northern Burma and Assam)
- part meronym
- member holonym
- substance meronym
- direct hypernym / inherited hypernym / sister term
- S: (n) capsicum, pepper, capsicum pepper plant (any of various tropical plants of the genus Capsicum bearing peppers)
- S: (n) pepper, peppercorn (pungent seasoning from the berry of the common pepper plant of East India; use whole or ground)
- S: (n) pepper (sweet and hot varieties of fruits of plants of the genus Capsicum)

Verb

- S: (v) pepper (add pepper to) "pepper the soup"
- S: (v) pepper, pelt (attack and bombard with or as if with missiles) "pelt the speaker with questions"

How might we represent words?

"Lexical Semantics"

- Dictionary definition
- Lemma and word forms
- Senses
- Relationships between words or senses
- Taxonomic relationships
- Word similarity, word relatedness
- Semantic frames and roles
- Connotation and sentiment

How to represent a word

- Until the ~2010s, in NLP words == atomic symbols
- One-hot representations in vector space:

$$
\begin{aligned}
& \begin{array}{|l|l|l|l|l|l|l|l|}
\hline 0 & 0 & \ldots & 0 & 0 & 0 & 0 & 1 \\
\text { tacos }
\end{array} \\
& \begin{array}{|l|l|l|l|l|l|l|l|}
\hline 0 & 0 & \ldots & 0 & 1 & 0 & 0 & 0 \\
\hline
\end{array} \\
& \begin{array}{|l|l|l|l|l|l|l|l|}
\hline 0 & 0 & \ldots & 0 & 0 & 1 & 0 & 0 \\
\hline
\end{array} \\
& \begin{array}{l|l|l|l|l|l|l|l|}
\hline 0 & 0 & \ldots & 0 & 0 & 0 & 0 & 1 \\
\hline
\end{array} \\
& \begin{array}{l|l|l|l|l|l|l|l|}
\hline 0 & 1 & \ldots & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array} \\
& \begin{array}{|l|l|l|l|l|l|l|l|}
\hline 0 & 0 & \ldots & 1 & 0 & 0 & 0 & 0 \\
\hline
\end{array}
\end{aligned}
$$

How to represent a word

- Until the ~2010s, in NLP words == atomic symbols
- One-hot representations in vector space:

- Useful for coding identity
- Can do matrix operations:
- Feed into machine learning models
- Matrix decompositions

How to represent a word

- Until the ~2010s, in NLP words == atomic symbols
- One-hot representations in vector space:

- Sparse representations that scale with vocabulary size
- "tacos" is orthogonal to "burritos"
- How can we encode word similarity (not just identity)

Distributional hypothesis

- Encode word similarity (not just identity) in word representations.
- How to encode similarity?
- Consider encountering a new word: tezgüino
- A bottle of tezgüino is on the table
- Everybody likes tezgüino
- Don't have tezgüino before you drive
- We make tezgüino out of corn

context				
	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
tezgüino	1	1	1	1
loud	0	0	0	0
$\mathbf{E} \boldsymbol{\Phi}$				
motor oil	1	0	0	1
tortillas	0	1	0	1
choices	0	1	0	0
wine	1	1	1	0

Word-word co-occurrence matrix

Apples are green and red.

Red apples are sweet.
Green oranges are sour

-	apples	are	green	and	red	sweet	oranges	sour
apples	2	2	1	1	2	1	0	0
are	2	3	1	1	2	1	1	1
green	1	1	2	1	1	0	1	1
and	1	1	1	1	1	0	0	0
red	2	2	1	1	2	1	0	0
sweet	1	1	0	0	1	1	0	0
oranges	0	1	1	0	0	0	1	1
sour	0	1	1	0	0	0	1	1

Distributional hypothesis

- These representations encode distributional properties of each word.
- The distributional hypothesis: words with similar meaning are used in similar contexts.
"The meaning of a word is its use in the language." [Wittgenstein 1943]
"If A and B have almost identical environments we say that they are synonyms." [Harris 1954]
"You shall know a word by the company it keeps." [Firth 1957]

How to encode context

How to encode context

- TF-IDF
- Word2Vec
- Not covering other methods: e.g. Brown clusters, Matrix factorization

Encoding Context with TF-IDF

- Consider a matrix of word counts across documents: term-document matrix

Words like the, it, they are not very discriminative, we can do better than raw counts

	As You Like It	Twelfth Night	Julius Caesar	Henry V	word vector
battle	1	0	7	13	
good	114	80	62	89	
fool	36	58	1	4	
wit	20	15	2	3	

Bag-of-words document representation

Encoding Context with TF-IDF

- TF-IDF incorporates two terms that capture these conflicting constraints:
- Term frequency (tf): frequency of the word t in the document

$$
t f_{t, d}=\log (\operatorname{count}(t, d)+1)
$$

Encoding Context with TF-IDF

- TF-IDF incorporates two terms that capture these conflicting constraints:
- Term frequency (tf): frequency of the word t in the document

$$
t f_{t, d}=\log (\operatorname{count}(t, d)+1)
$$

- Document frequency (df): number of documents that a term occurs in
- Inverse document frequency (idf):

Higher for terms
$i d f_{t}=\log \left(\frac{N}{d f_{t}}\right) \longrightarrow$ that occur in

- (N) is the number of documents in the corpus fewer documents

Encoding Context with TF-IDF

- TF-IDF incorporates two terms that capture these conflicting constraints:
- Term frequency (tf): frequency of the word t in the document

$$
t f_{t, d}=\log (\operatorname{count}(t, d)+1)
$$

- Document frequency (df): number of documents that a term occurs in
- Inverse document frequency (idf):

$$
i d f_{t}=\log \left(\frac{N}{d f_{t}}\right) \longrightarrow \begin{aligned}
& \text { Higher for terms } \\
& \text { that occur in } \\
& \text { fewer documents }
\end{aligned}
$$

- (N) is the number of documents in the corpus
- TF-IDF combines these two terms: $t f-i d f_{t, d}=t f_{t, d} * i d f_{t}$

Notes about TF-IDF

- Very useful way of creating document embeddings
- Designed for and still excels at document retrieval
- Often useful as features for classification models
- We could use variants of log-odds with a Dirichlet prior ratios ortopic models to create document or word embeddings
- Word-embedding use cases of TF-IDF are not as common

Dimensionality Reduction

- TF-IDF representations are still sparse
- Wikipedia: ~29 million English documents. Vocab: ~ 1 million words.
- Sparse vs. dense vectors:
- Short vectors often easier to use as features in a classifier (fewer parameters).
- Dense vectors may generalize better than storing explicit counts.
- May better capture synonymy
- In practice, they just work better [Baroni et al. 2014]
- How do we build dense vectors?

Word2Vec

- Instead of counting how often each word w occurs near "corn", train a classifier on a binary prediction task: Is w likely to show up near "corn"?
- Don't actually care about performing this task, but we'll take the learned classifier weights as the word embeddings
- Training is self-supervised: no annotated data required, just raw text!

Word2Vec: Two Algorithms

- Context bag-of-words (CBOW): predict current word using context
○ $P\left(w_{t} \mid w_{t+1}, \ldots, w_{t+k}, w_{t-1}, \ldots, w_{t+k}\right)$
- Skip-gram: predict each context word using current word
○ $P\left(w_{t+1}, \ldots, w_{t+k}, w_{t-1}, \ldots, w_{t+k} \mid w_{t}\right)$

Figure 1: New model architectures. The CBOW architecture predicts the current word based on the context, and the Skip-gram predicts surrounding words given the current word.

Skip-gram: Probabilities

... that Europe needs unified banking regulation to replace the hodgepodge ...

$$
w_{t-3} \quad w_{t-2} \quad w_{t-1} \quad w_{t} \quad w_{t+1} \quad w_{t+2} \quad \ldots \quad w_{t+5}
$$

We want to train a model to output $P\left(w_{t+j} \mid w_{t}\right)$. We define:

$$
\begin{array}{ll}
\qquad P\left(w_{t+j} \mid w_{t}\right)=P(o \mid c)=\frac{\left.\exp \mid u_{o}^{T} v_{c}\right)}{\sum_{i=1}^{V} \exp \left(u_{i}^{T} v_{c}\right)} & \begin{array}{l}
\text { Dot product (similarity } \\
\text { metric) } \\
\text { Larger dot product }= \\
\text { larger similarity }
\end{array} \\
\begin{array}{ll}
0=\text { index of outside (context) word } \\
\mathrm{c}=\text { index of center word }\left(w_{t}\right) & \mathrm{u}=\text { vector for word as outside (context) } \\
\mathrm{V}=\text { vocab size } & \mathrm{v}=\text { vector for word as center }
\end{array}
\end{array}
$$

Skip-gram: How do we learn u and w?

... that Europe needs unified banking regulation to replace the hodgepodge ...

$$
w_{t-3} \quad w_{t-2} \quad w_{t-1} \quad w_{t} \stackrel{w_{t+1} w_{t+2} \quad \cdots}{\substack{ \\ \\ \\ \\ \\ \\\hline}}
$$

Data Likelihood: probability of any context word given center word (maximize)

$$
\begin{aligned}
& \text { [Note we're assuming } \\
& \xrightarrow{\text { Conditional independent] }} L=\frac{1}{T} \prod_{t=1} \prod_{-m \leq j \leq m, j \neq 0} P\left(w_{t+j} \mid w_{t}, \theta\right)
\end{aligned}
$$

Objective Function: negative log probability (minimize)

$$
L=-\frac{1}{T} \sum_{t=1}^{T} \sum_{-m \leq j \leq m, j \neq 0} \log P\left(w_{t+j} \mid w_{t}, \theta\right)
$$

Skip-gram: How do we learn u and w?

$$
\begin{aligned}
L= & -\frac{1}{T} \sum_{t=1}^{T} \sum_{-m \leq j \leq m, j \neq 0} \log P\left(w_{t+j} \mid w_{t}, \theta\right) \\
& P\left(w_{t+j} \mid w_{t}\right)=P(o \mid c)=\frac{\exp \left(u_{o}^{T} v_{c}\right)}{\sum_{i=1}^{V} \exp \left(u_{i}^{T} v_{c}\right)}
\end{aligned}
$$

- Gradient-based estimation (e.g. stochastic gradient descent)
- Start with uninformed guess for u and w (e.g. random)
- Iteratively change u and w in the way that locally best-improves the guess
- Computing gradients (e.g. derivatives) of the objective function with respect to u and w inform how to change them

At the end of training we've learned 2 sets of embeddings: we can average them or just keep one of them

Short Break

Skip-gram

$$
\begin{gathered}
\exp \left(u_{o}^{T} v_{c}\right) \\
\sum_{i=1}^{V} \exp \left(u_{i}^{T} v_{c}\right)
\end{gathered}
$$

- Problem:
- Denominator is computationally expensive! O(VK)
- Solutions:
- Hierarchical softmax $\mathrm{O}(\log \mathrm{V})$
- Negative Sampling O(1)

Skip-gram: Negative sampling

- Intuition: we don't need to down-weight all other words at once, we can chose a small number of negative samples

Skip-gram: Negative sampling

$$
\mathrm{P}(\mathrm{o} \mid \mathrm{c})=\frac{\exp \left(u_{o}^{T} v_{c}\right)}{\sum_{i=1}^{V} \exp \left(u_{i}^{T} v_{c}\right)} \quad \longrightarrow \quad \frac{1}{1+\exp \left(-u_{o}^{T} v_{c}\right)}
$$

- New objective (single context word, k negative samples)

$$
\log P\left(o_{+} \mid c\right)+\sum_{i=1}^{k} \log \left(1-P\left(o_{i} \mid c\right)\right)
$$

- (Problem changes from multiclass to binary)

Choosing negative samples

- Generally choose frequent words
- Could choose purely based on frequency $\mathrm{P}(\mathrm{w})$
- In practice, $P_{\alpha}(w)=\frac{\operatorname{count}(w)^{\alpha}}{\sum_{w} \operatorname{count}(w)^{\alpha}}$ with $\alpha=0.75$ works well (gives rare words slightly higher probability)

Recap

- We want meaningful representations of words that we can use for corpus analytics (and other things)
- By defining a fake task, predicting context from a word (skip-gram) or a word from context (CBOW), we can learn vector matrices
- Actual implementation requires additional tricks for reducing computational complexity

Pre-trained Word2Vec Embeddings

- https://code.google.com/archive/p/word2vec/
- You can train embeddings on your own data
- Depending on your application, you can also start with embeddings trained on large data set

Other word embeddings: GloVe [Pennington et al. 2014]

- https://nlp.stanford.edu/projects/glove/
- "Global Vectors"
- Model is based on capturing global corpus statistics
- Incorporates ratios of probabilities from the word-word cooccurrence matrix (intuitions of count-based models) with linear structures used by methods like word2vec

Other word embeddings: fasttext [Bojanowsi et al. 2017]

- Word2vec can't handle unknown words and sparsity of rare word-forms (e.g. we should be able to infer "milking" from "milk" + "ing")
- Uses subword models, representing each word as itself plus a bag of constituent ngrams, with special boundary symbols < and > added to each word.
- Each word is represented by the sum of all of the embeddings of its constituent ngrams. Unknown words can be represented by just the sum of the constituent ngrams.

Gensim: Python Package for working with word embeddings

```
>>> from gensim.test.utils import common_texts
>>> from gensim.models import Word2Vec
>>
>>> model = Word2Vec(sentences=common_texts, vector_size=100, window=5, min_count=1, workers=4)
>>> model.save("word2vec.model")
```

https://radimrehurek.com/gensim/models/word2vec.html

Takeaways

- Intuitive ideas behind representing words as vectors
- Distributional Hypothesis
- Basic ideas behind TF-IDF weighting
- Basic ideas behind Word2Vec
- Difference between CBOW and Skip-gram
- Practical challenges
- Know where your embeddings came from and how they were made

Next Class

- How do we know if our embeddings work?
- What do we do with them?

HW 1

- Released today
- Individual assignment (ok to discuss at a high-level, but all code and written responses must be your own)
- 3 Parts:
- 1. Log-odds
- 2. Topic Modeling
- 3. Word Embeddings (we will have finished this material by Monday)
- Policy reminder:
- 5 late days, no other extensions
- Can use late days in any way (except not for final project report)

HW $5 \rightarrow$ "Project"

- We're going to refer to HW 5 as course project for scheduling reasons (more details on the assignment later)

Acknowledgements and Resources

- Slide content drew heavily from Emma Strubell and Yulia Tsvetkov's slides: http://demo.clab.cs.cmu.edu/11711fa20/slides/11711-04-word-vectors.pdf
- Resources:
- Lecture Notes from Stanford NLP class on word embeddings https://web.stanford.edu/class/cs224n/readings/cs224n winter2023 lecture1 no tes draft.pdf
- Efficient Estimation of Word Representations in Vector Space (original word2vec paper) https://arxiv.org/pdf/1301.3781.pdf
- Distributed Representations of Words and Phrases and their Compositionality (negative sampling paper)
https://proceedings.neurips.cc/paper files/paper/2013/file/9aa42b31882ec039965f3c4 923ce901b-Paper.pdf
- Jurafsky and Martin textbook Chap 6: https://web.stanford.edu/~jurafsky/slp3/6.pdf

