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Classification models



Overview

= Recap: last class
o Why annotate data?
o Tips and tricks for components of annotation process
o Annotator agreement metrics
o Ethics of crowdsourcing

This class: What do we do with annotated data?
= Logistic Regression

= Neural networks

= Adjusting for model errors
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Methods of Data analysis

= We want to know if (and when and how) Republicans talk about taxes more than
Democrats:

1. We use word statistics to find if words like “taxes” and “spending” are more
common in republican speeches

2. We can train a topic model, identify the tax-related topics and determine if that
topic is more common in Republican vs. Democratic speech (or incorporate
party affiliation as co-variate in STM)

3. We could go through every speech by hand:
- Label if each speech or sentence or word is related to taxes

- Count if we labeled more Republican speech than Democratic
speech

4. We can automate #3 using machine learning

’@,‘.} JOHNS HOPKINS



W ]OHNS HOPKINS
y WHITING SCHOOL
of ENGINEERING

Logistic Regression
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Components of a probabilistic machine
learning classifier

= Given m input/output pairs (x(:y®):

1. A feature representation of the input. For each input observation x(, a vector
of features [xy, X, ... , X5]. Feature j for input x( is x;, more completely x;(, or
sometimes fj(x).

2. A classification function that computes §, the estimated class, via p(y|x), like
the sigmoid or softmax functions.

3.  An objective function for learning, like cross-entropy loss.

4.  An algorithm for optimizing the objective function: stochastic gradient
descent.
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Supervised learning
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1. Feature Representation



Feature representation

= We can craft specific features:
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Var Definition Value in Fig. 5.2
X count(positive lexicon) € doc) 3
b)) count(negative lexicon) € doc) 2
. 1 if “no” € doc |
3 0 otherwise
x4  count(1st and 2nd pronouns € doc) 3
. 1 if “!” € doc 0
> 0 otherwise
x¢  log(word count of doc) In(66) = 4.19




Feature representation

= Common choice for document-level tasks:
o BOW representation (with TF-IDF weighting)
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A_s You Tw_elfth Julius Henry V
Like It Night Caesar
battle 1 0 7 13
good 114 80 62 89
fool 36 58 1 4
wit 20 15 2 3

Bag-of-words document
representation
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Binary Classification in Logistic
Regression

= @Given a series of input/output pairs:
o (x0, y0)

= For each observation x(
o We represent x() by a feature vector [x;, X5,..., X,]
o We compute an output: a predicted class 9  {0,1}

o (multinomial logistic regression: y € {0, 1, 2, 3, 4})
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Introducing feature weights

= For feature x;, weight w; tells is how important is x;
o X; ="review contains ‘awesome™': W; = +10
o X; ="review contains ‘abysmal™: = w;= -10
o Xy = review contains ‘mediocre™: wy = -2

= Feature weights are useful for learning an accurate classifier, but they are also
useful for analyzing feature importance
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How to do classification

= For each feature ¥x;, introduce weight w; which tells us importance of x;
o (Plus we'll have a bias b)

= We'll sum up all the weighted features and the bias

n
7 = ZW,’X,’ +b
=1

z = w-x+b

= If this sum is high, we say y=1; if low, then y=0
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We want a probabilistic classifier

We need to formalize “sum is high”.

p(y=1]x; ©)
p(y=0]x; ©)
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The problem: zisn't a probability, it's
just a number!

z = w-x+0b

= Solution: use a function of z that goes from 0 to 1

1 1
14e % 14exp(—2)

y=o0(z)
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The very useful sigmoid or logistic
function
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Idea of logistic regression

We'll compute w:x+b

And then we'll pass it through the sigmoid function:
X o(w-x+b)

And we'll just treat it as a probability
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Making probabilities with sigmoids

Py=1) = o(w-x+Db)
1
l+exp(—(w-x+b))

Py=0) = 1—oc(w-x+Db)

1
~14exp(—(w-x+b))
exp(—(w-x+b))
l1+exp(—(w-x+b))

o(—(w-x+b))

= 1

g
L
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Turning a probability into a classifier

. | 1if Ply=1Jx) >0.5
Y= 0 otherwise

0.5 here is called the decision boundary
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3. Loss Function



Loss function

= Supervised classification:
o We know the correct label y (either 0 or 1) for each x.
o But what the system produces is an estimate, y

= We W;-?t to set wand b to minimize the distance between our estimate $( and the
true LY.
o We need a distance estimator: a loss function or a cost function (#3)
o We need an optimization algorithm to update wand b to minimize the loss (#4)
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Loss Function

We want to know how far is the classifier output:
n y = o(w-x+Db)

from the true output:
o y [= either 0 or 1]

We'll call this difference:
E L(y ,¥) = how much y differs from the true y

Qi'l" JOHNS HOPKINS
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Deriving cross-entropy loss for a single
observation x

= Goal: maximize probability of the correct label p(y|x)

= Since there are only 2 discrete outcomes (0 or 1) we can express the probability
p(y|x) from our classifier (the thing we want to maximize) as

pOl) = 9 (1=
= noting:

o if y=1, this simplifies to y
o if y=0, this simplifies to 1-
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Deriving cross-entropy loss for a single
observation x

= Goal: maximize probability of the correct label p(y|x)

= Since there are only 2 discrete outcomes (0 or 1) we can express the probability
p(y|x) from our classifier (the thing we want to maximize) as

pylr) = 3 (1-9)"7
= Take the log of both sides
logp(ylx) = log[9” (1-9)""]
= ylogy+(1—y)log(1—73)
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Deriving cross-entropy loss for a single
observation x

= Goal: maximize probability of the correct label p(y|x)
log p(ylx) = log [§” (1-5)']

= ylogy+(1—y)log(1—3)
= Now flip sign to turn this into a loss: something to minimize
= Cross-entropy loss (because is formula for cross-entropy(y, 9 ))

Leg(9,y) = —logp(ylx) = —[ylogy+ (1 —y)log(l—J)]
= Or, plugging in definition of y:
Lee(9,y) = —|ylogo(w-x+0b)+ (1 —y)log(l—o(w-x+b))|
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Our goal: minimize the loss

= Let's make explicit that the loss function is parameterized by weights 6=(w,b)
. And we'll represent y as F(x; 8 ) to make the dependence on 8 more obvious
= We want the weights that minimize the loss, averaged over all examples:

A

60 = argrnin % ZLCE (f(x(l), 9)7);(1))
0 i=1
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Intuition of gradient descent

|
* How do I get to the bottom of this river canyon?
S . }

Look around me 360°

Find the direction of steepest
slope down

Go that way
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Gradient Descent

= The gradient of a function of many variables is a vector pointing in the direction of
the greatest increase in a function.

= For each dimension w;the gradient component /tells us the slope with respect to
that variable.
o "“How much would a small change in w;influence the total loss function L?”
o We express each element as a partial derivative 9 of the loss ow;
o The gradient is then defined as a vector of these partials.

= Gradient Descent: Find the gradient of the loss function at the current point and
move in the opposite direction.

W = [ f () )
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Neural Networks



Components of a probabilistic machine
learning classifier

= Given m input/output pairs (x(:y®):

1. A feature representation of the input. For each input observation x(, a vector
of features [xy, X, ... , X5]. Feature j for input x( is x;, more completely x;(, or
sometimes fj(x).

2. A classification function that computes §, the estimated class, via p(y|x), like
the sigmoid or softmax functions.

3.  An objective function for learning, like cross-entropy loss.

4.  An algorithm for optimizing the objective function: stochastic gradient
descent.
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2. Neural Networks: Made up of units

Output value ETY
d

Non-linear transform

Weighted sum

Weights  w,
Input layer x; X, X3

34



2. Binary Logistic Regression as a 1-layer

Network
B (we don't count the input layer in counting layers!)

Output layer y=oc(Ww-:x+b)

(0 node) (y is a scalar)
w (scalar)
(vector)
Input layer
vector x

=X < c 1

oy JOHNS HOPKINS I
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Two-layer Neural Network with scalar
output

Output layer y — O-ISZ )
(o node) 7z =U
U
hidden units
(o node) h= O'(Wx —+ b)
Need a non-linear
b function, e.g. sigmoid,
RelLU, tanh
Input layer
(vector)

=X c .
W JOHNS HOPKINS
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4. Backpropogation for Gradient
Estimation

= We can train the model in a similar way, but we need the derivative of the loss with
respect to each weight in every layer of the network

o But the loss is computed only at the very end of the network!

= Solution: error backpropagation (Rumelhart, Hinton, Williams, 1986)
o Algorithm for gradient estimation

Qi'l" JOHNS HOPKINS
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1. Learned word embeddings instead of

crafted features
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Evaluation Metrics

= How can we tell if model is correct?
o Performance on held-out test set

= Data splits:
o Training set: used to learn model parameters

o Validation/development set: used to learn hyperparameters, debug, choose
best model instance

o Test set: used to evaluate model performance

@ JOHNS HOPKINS
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Evaluation

Gold Labels
Not Offensive Sum
Offensive
Not 197
Mo_de_l Offensive A7 =
Prediction Offensive 10 15 25
Sum 157 65 222
Numb t 147+15
Accuracy; —moeT CoTrect _ Z2F0 = 73%
Total 222
.. T Positi 15
Precision: rue FoStive = = 60%

True Positive+False Positive o 15+10

True Positive 15
= 23%

Recall: — — =
True Positive+False Negative 15+50
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Prevalence Estimates

= We often want to use the model for prevalence estimates
o Did prevalence of positive emotions increase over time?

80 1
—=— anger —%— surprise
—e— disgust —+— sadness
60 - positivity

hin o
40 1 \ . Wmvﬂ

% of tweets containing each emotion
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Simple Approach: Classify and Count
(CC)

. 1
0¢C = =N 1{p; > 0.5
nz; {pi > 0.5}

= Convert classifier output p;to binary decision and compute average over all 7 data
points (model estimates that x% of tweets express anger)

= What if our held-out test accuracy is 75%? Should we still count all outputs predicted
by the model?

George Forman. 2005. Counting positives accurately despite inaccurate classification. In European Conference on

Machine Learning.

‘.u IOH\\ HOPKINS Keith, Katherine, and Brendan O'Connor. "Uncertainty-aware generative models for inferring document class 43
~ prevalence." Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. 2018



Adjusted Classify and Count (ACC)

5400 _ ACC — FPR
~ TPR — FPR

= Dependent on the correctness of TPR and FPR

'T JOHNS H() rkiNs George Forman. 2005. Counting positives accurately despite inaccurate
A classification. In European Conference on Machine Learning.
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Probablistic Classify and Count (PCC)

A 1
HPCC _ 7_2’ sz
)

= Is typically effective if model is well-calibrated
o For all test samples where p=0.9, ~90% should be true positives
o For all test samples where p=0.7, ~70% should be true positives
o For all test samples where p=0.1, ~10% should be true positives

ST ]()H\\ H() pkins Dallas Card and Noah A Smith. 2018. The importance of calibration for estimating proportions from annotations. In
W : Proceedings of Empirical Methods in Natural Language Processing
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