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Recap

= Last class:
o Causal Inference with text

= Reminders:
o HW 3 due (next) Friday
o Midterm in 1 week
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Introduction and Definitions



Motivation: understand relationship

-

= High School Partnership Network

Male
Female

F1G. 3.—Temporally ordered ties in the Jefferson High partnership network

=23 1511NS HOPKINS Bearman, P. S., Moody, J., & Stovel, K. (2004). Chains of affection: The structure of adolescent romantic and sexual
|'5"J ?I’]T\J¢<-,_m;l}jg\)‘1§xlN networks. American journal of sociology, 110(1), 44-91.
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Motivation: understand epidemic

Largest Short-tailed

= Sex Partner Network and HIV
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Fig. 3. Size of Largest component and bicomponent by average number of sexual partners for

short-tailed and scale-free distributions. The curves plot the growth of the largest component
and bicomponent as a function of the average degree, based on 100 simulations of a 10,000-
node network at each degree setting. The red curve plots the analytic solution for the size of
the giant component for the simulated networks with scale-free distributions, and the orange
curve plots the largest bicomponent. The dark blue curve plots the analytic solution for the
size of the largest component for the simulated low-degree networks, and the light blue curve
plots the size of the largest bicomponent. The bicomponent curves are not continuous due to

sampling.
HNSs Hopkins  Moody, J., Adams, J., & Morris, M. (2017). Epidemic potential by sexual activity distributions. Network science, 5(4),
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Motivation: understand online “epidemic”
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Fig. 1 Rumor cascades.

Jorns Horkins — Vosoughi, S., Roy, D., & Aral, S. (2018). The spread of true and false news online. science, 359(6380), 1146-1151.
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Motivation: how to succeed as individual

= Looking for a job? Making Weak Ties.
= Want to be influential? Try something new, but don’t go too far.

The Strength of Weak Ties'
Mark S, Granovetter Atypical Combinations and

g

Analysis of social networks is suggested as a tool for linking micro
and macro levels of sociological theory. The procedure is illustrated
by elaboration of the macro implications of one aspect of small-scale
interaction: the strength of dyadic ties. It is argued that the degree
of overlap of two individuals’ friendship networks varies directly
with the strength of their tie to one another. The impact of this
principle on diffusion of influence and information, mobility oppor-
tunity, and community organization is explored. Stress is laid on the
cohesive power of weak ties. Most network models deal, implicitly,
with strong ties, thus confining their applicability to small, well-
defined groups. Emphasis on weak ties lends itself to discussion of
relations befween groups and to analysis of segments of social struc-
ture not easily defined in terms of primary groups.

Johns Hopkins Universit - - g
’ Scientific Impact

Brian Uzzi,? Satyam Mukherjee,? Michael Stringer,> Ben Jones™**

Novelty is an essential feature of creative ideas, yet the building blocks of new ideas are often
embodied in existing knowledge. From this perspective, balancing atypical knowledge with
conventional knowledge may be critical to the link between innovativeness and impact. Our
analysis of 17.9 million papers spanning all scientific fields suggests that science follows a
nearly universal pattern: The highest-impact science is primarily grounded in exceptionally
conventional combinations of prior work yet simultaneously features an intrusion of unusual
combinations. Papers of this type were twice as likely to be highly cited works. Novel combinations
of prior work are rare, yet teams are 37.7% more likely than solo authors to insert novel
combinations into familiar knowledge domains.

Granovetter, M. S. (1973). The strength of weak ties. American journal of sociology, 78(6), 1360-1380.

UREid 342(6157), 468-472.

HNS HOPKINS - Uzzi, B., Mukherjee, S., Stringer, M., & Jones, B. (2013). Atypical combinations and scientific impact. Science, 8



Motivation: how to promote mobility as society

= https://socialcapital.org/
= o to the right schools and make the right friends
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capital I: measurement and associations with economic mobility. Nature, 608(7921), 108-121.


https://socialcapital.org/

How might we represent network?

Represent connections between vertices/nodes

= Vertex: a node of the graph
= Edge: a link between two vertices

A graph consists of a set of nodes and a set of edges
= G(V,E)

N YHNS HOPKINS
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Graph Data: Adjacency Matrix

= The matrix of vertices connections
Encode in a symmetric matrix (for undirected network)

(n X n) matrix A

The adjacency matrix has elements

|1 if iandj are connected
aij — .
0 otherwise

Feter
Bob
1ill

Aaron

(001 1 1 0)
1 0 0 1 0
A=|1 0 0 1 1
1 1 1 0 1
0 0 1 1 0

e 1 & 1 @
1 @ 1 @ 1
e 1 &) 1 @
1 @ 1 @ 1
e 1 5 1 @

QY JOHNS HOPKINS - Eyample from: https://bookdown.org/markhoff/social _network analysis/understanding-network-data-structures.html
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https://bookdown.org/markhoff/social_network_analysis/understanding-network-data-structures.html

Graph Data: Edge Lists

= Two-column matrices that directly indicate how vertices are connected

Health
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e Collections of Social Network Datasets: https://networks.skewed.de/ 12



https://bookdown.org/markhoff/social_network_analysis/understanding-network-data-structures.html
https://networks.skewed.de/
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https://sonic.northwestern.edu/

Organizations: p , & friendship

i 1

Hypergraph Incidence Matrix
= Multiplex B -

Types of Edges

= Weighted vs. unweighted

eZ e3 e4
V. 1 0 0 0
\l3 1 1 1 0
v, (o] 0 0 1
. . . . . Vs Y 0 1 0 .V7
* Affect in a sorority vs. campaign financing v 0o o0 1 o
. B e AY o vw 0 0 0 o
500k 100k . . . .
i > Bipartite sociomatrix
* $320k “- IENENREEEN
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- 0 1 1 1 0
n 1 0 0 0 0

Example from: https://sonic.northwestern.edu/
Example of hypergraph: Lungeanu, A., Carter, D. R., DeChurch, L. A., & Contractor, N. S. (2021). How team interlock
JOHNS HOPKINS ecosystel_ns _shape _the assembly of scientific teams: A hypergraph approach. In Computational Methods for
e a0 Communication Science (pp. 95-119). Routledge. 14
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https://sonic.northwestern.edu/
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Network Parameters

Different Dimensions to Consider

= Entity: Nodes vs. Edges (e.g., degree, path length)

Scale: Local vs. Global (e.g., cluster, dimensions)

Topology: Structure (e.g., small world network, scale-free network)
Quantity: Volume (e.g., weighted edges)

Quality: Classification (e.g., friends, family, ...)

Different combinations of dimensions create different network metrics;
You can always create your own.

Qi,lyr JOHNS HOPKINS
4 WHITING SCHOOIL
NGINEER
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Example 1: Network Density

Edges * Global (Ignore multiplex hypergraph topology for all examples)
= For a directed unweighted network with n nodes, the max number of possible edges is:

nn—1)

= For an undirected unweighted network:
nn—1)/2

Number of edges

= Network density:
Number of possible edges

w JOHNS HOPKINS
|I!"J WHITING SCHOOL 17
NGINEER



Americans are becoming more isolated

Table 3. Structural Characteristics of Core Discussion Networks

1985 (N = 1,167%) 2004 (N = 788Y)

Network Density
<.25 9.9% 7.3%
.25-.49 18.5% 11.8%
.50-.74 37.9% 39.5%
>.74 33.7% 41.4%
Mean .60 .66
SD 33 33
Mean Frequency of Contact (days per year)
6-12 3.7% 3.0%
>12-52 15.3% 10.6%
>52-365 81.0% 86.4%
Mean 208.92 243 .81
SD 117.08 114.86
Length of Association (in years)
>0-4.5 12.1% 10.7%
>4.5-8+ 87.9% 89.3%
Mean 6.72 7.01
SD 1.34 1.00

McPherson, M., Smith-Lovin, L., & Brashears, M. E. (2006). Social isolation in America: Changes in core discussion
JOHNS HOPKINS networks over two decades. American sociological review, 71(3), 353-375. 18

WHITING SCHOOI
of ENGINEERING



Example 2: Closeness Centrality

Nodes * Global
= Measuring the mean shortest distance from a node to every other nodes in a network

with n nodes:
1
n—1 Z dij

= Where d represent the length of the shortest path between i and j. Here, the path
length refers to the number of nodes between i and j (degrees of separation).

w JOHNS HOPKINS
|I!"J WHITING SCHOOL 19
NGINEER



How minorities generate impact from a

Table 1. Variable Descriptions and Descriptive Statistics

peripheral location = -

Media Influence Number of words in press release reproduced verbatim 4.590 18.736
(Outcome) or paraphrased by six national media sources.

Fringe Media Euclidean distance between five dummy variables .913 .197
Frames describing civil society organization media frames

about Islam in each press release and average for all
other organizations during the same year.

u Sta rt from pe ri phery a nd Cha n nel Assets Total assets of organization sponsoring press release at r.ﬁ%?\ rfz.?i?w

vear-end

Inter-organizational Closeness centrality of organization within field .188 .355
h h H H | H Networks (constructed using interlocking directorates by year).
t ro u g e m Otl O n s (Se n tl m e nt a n a ySI S) Narrowness of Dummy variable that describes whether organization's 493 .500
Mission primary goal is influencing media discourse about
Islam (1 = yes, 0 = no).
100 Displays of Fear or Dummy variable that describes whether civil society 654 478
Anger organization displays fear or anger in press release
(1 =ves, 0 =no).
75 News Cycle Number of hits for the term “Muslim” or “Islam” on 8,264 2,830
v Google News during month the press release was issued.
é Previous Media Dummy variable that describes whether civil society 524 .500
° Coverage organization issuing the press release previously
- . N
g 50 influenced media discourse about Islam.
% U.S. Government  Dummy variable that describes whether the press .283 .451
E‘ Targeted release targets an individual or organization
g representing the U. S. government (1 = yes, 0 = no).
8 25 Public Interest Dummy variable that describes whether main event 061 .239
described in the press release was one of the top-10
Google searches during the week it was issued (1 =
yes, 0 =no).
0 Violence or Dummy variable that describes whether main event .223 416
Disruptive described in the press release involved physical
0 5 10 Activity violence, strikes, protests, rallies, or boycotts (1 = yes,
Days 0 = no).
Cognitive = Emotional Event in United Dummy variable that describes whether main event 572 450
States described in the press release occurred in the United
Figure 1. Idealized Opportunity Structure Created by Cognitive-Emotional Currents States (1 = yes, 0 = no).

Bail, C. A. (2012). The fringe effect: Civil society organizations and the evolution of media discourse about Islam since
the September 11th attacks. American Sociological Review, 77(6), 855-879.
JOHNS HOPKINS Bail, C. A., Brown, T. W., & Mann, M. (2017). Channeling hearts and minds: Advocacy organizations, cognitive-emotionib

WHITING SCHOOI

o ENCINEERING currents, and public conversation. American Sociological Review, 82(6), 1188-1213.



Example 3: Quarter-Power Scaling

Topology * Volume * Scale
= QObservation: Many biological scaling can be described as

Y = aM?

Where Y is a biological variable, such as “/ife spar’’; a is a constant, b is a scaling exponent;

M is a metabolic measurement, such as “blood circulation time’. The value of b is usually Va
or 3a,

We also have similar observations in economic growth, innovation, and pace of life in cities.

West, G. B., Brown, J. H., & Enquist, B. J. (1999). The fourth dimension of life: fractal geometry and allometric scaling of
organisms. science, 284(5420), 1677-1679.

£33 J011Ns HOPKINS Bett.enc.qunt, L. M., Lpbo, 1., Hering, D., Kiihnert, C,, & West, G. B. (2007). Growth, innovation, scaling, and the pace of
@ e s life in cities. Proceedings of the national academy of sciences, 104(17), 7301-7306. 21



= Theory: maximize metabolic capacity - transportation through space-filling fractal networks

of branching tubes

Model

< "k
™
Tk
+
Parameters

Fig. 1. Diagrammatic examples of
segments of biological distribu-
tion networks: (A) mammalian cir-
culatory and respiratory systems
composed of branching tubes;
(B) plant vessel-bundle vascular
system composed of diverging
vessel elements; (C) topological
representation of such networks,
where k specifies the order of the
level, beginning with the aorta
(k = 0) and ending with the capil-
lary (k = N); and (D) parameters of
a typical tube at the kth level.

West, G. B., Brown, J. H., & Enquist, B. J. (1997). A general model for the origin of allometric scaling laws in

) JOHINS HOPKINS biology. Science, 276(5309), 122-126. 22




Table 1. Values of allometric exponents for variables of the mammalian  with empirical observations. Observed values of exponents are taken from (2,
cardiovascular and respiratory systems predicted by the model compared  3); ND denotes that no data are available.

Cardiovascular Respiratory
Exponent Exponent
Variable Variable
Predicted Observed Predicted Observed

Aorta radius ry, 3/8 = 0.375 0.36 Tracheal radius 3/8= 0.375 0.39
Aorta pressure Ap, 0= 0.00 0.032 Interpleural pressure O 0.00 0.004
Aorta blood velocity uy, 0= 0.00 0.07 Air velocity in trachea O 0.00 0.02
Blood volume V, T+ 1.00 1.00 Lung volume 1= 1.00 1.05
Circulation time 1/4 + 0.25 0.25 Volume flow to lung 3/4= 075 0.80
Circulation distance / 1/4 +# 0.25 ND Volume of alveolus V, 1/4F 0.25 ND
Cardiac stroke volume 1+ 1.00 1.03 Tidal volume 1F 1.00 1.041
Cardiac frequency w -1/4 = =0.25 -0.25 Respiratory frequency -1/4 = =0.25 -0.26
Cardiac output £ 3/4 = 0.75 0.74 Power dissipated 3/4= 075 0.78
Number of capillaries N 3/4+ 0.75 ND Number of alveoli N, 3/4= 075 ND
Service volume radius 112 + 0.083 ND Radius of alveolus r, 112 = 0.083 0.13
Womersley number « 1/4 # 0.25 0.25 Area of alveolus A, 1/6 = 0.083 ND
Density of capillaries —1/12 # —0.083 —0.095 Area of lung A_ 11/12= 0.92 0.95
O, affinity of blood P, —1/12 + —0.083 —0.089 O,, diffusing capacity 1= 1.00 0.99
Total resistance Z -3/4 + —-0.75 -0.76 Total resistance -3/4 = -0.75 -0.70
Metabolic rate B 3/4 + 0.75 0.75 O, consumption rate 34 0.75 0.76

'.I,r JOHNS HOPKINS
I’ WHITING SCHOOL
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West, G. B., Brown, J. H., & Enquist, B. J. (1997). A general model for the origin of allometric scaling laws in
biology. Science, 276(5309), 122-126. 23



List of Other Metrics

Node Degree (in-degree; out-degree)
Degree distribution

Betweenness centrality

Eigenvector centrality

Page Rank (Google)

Constraint (Structure hole)

Hubs and Authorities (HITS)
Clustering coefficient
Components

Subgraphs

OXFORD

N-C|ICIU€S ’ "“ K’-—‘ : Second Edition
N-clans "

-y Vet a Mark
K-plexes P STV EE TS Newman
K-cores

Structural Equivalence
Shortcut

For more information, refer to textbooks, Wikipedia or
python/R packages (e.g. NetworkX https://networkx.org/)

J()tl‘lﬁﬁﬁgr}fllNS Newman, M. (2018). Networks. Oxford university press. 24
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Call back

= Logistic Regression (Feb 14) assume independence of errors, linearity in the
logit for continuous variables, absence of multicollinearity, and lack of strongly

influential outliers

Supervised learning

sports economy  world

world politics  politics

D

S| =

Logistic
Regression
Classifier

Logistic
Regression
Classifier

I:> sports
|::> politics

Training: learn weights w and b
using stochastic gradient
descent and cross-entropy loss.

Inference Test: Given a test
example x, compute p(y|x) using
learned weights w and b, and return
whichever label (y = 1 ory = 0) is
higher probability

ZQZI?JOH‘?J‘*‘HQPI\N Stoltzfus, J. C. (2011). Logistic regression: a brief primer. Academic emergency medicine, 18(10), 1099-1104.

26



Network “regression”

Problem:

= Analogous to logistic regression: if we want to predict the probability that a pair of
nodes in a network will have a tie between them (0,1).

= Ties between nodes in real social networks are not independent.

Solution
= Exponential Random Graph Model (ERGM)

= Through simulation, ERGMs allow dyadic and higher-order dependencies to be
modeled. Then it can describe how interdependent structures shape a network.

https://eehh-stanford.qgithub.io/SNA-workshop/ergm-intro.html#what-is-an-ergm
J()HNS HOPKINS Hunter, D. R., Handcock, M. S., Butts, C. T., Goodreau, S. M., & Morris, M. (2008). ergm: A package to fit, simulate ang7
V" wmg scron diagnose exponential-family models for networks. Journal of statistical software, 24(3), nihpa54860.



https://eehh-stanford.github.io/SNA-workshop/ergm-intro.html#what-is-an-ergm

ERGM Model

= Observe the distribution of structural features of interest in simulated networks

P(X)

______
L]
2 L
\ &
@J()HNS Hor

KINS Figure from: https://sonic.northwestern.edu/ 28



https://sonic.northwestern.edu/

Network Statistics: Undirected

ERGM Model

Parameter statnet name Parameter statnet name

Edge edges >  ® Isolates isolates

. Addmg different 2-Star kstar (2) < 3-Star kstar (3) <
. . Triangle triangle K-Star kstar (k) :
structural metrics as X into LN —

a “regression”. Network Statistics: Directed

Parameter statnet name Parameter statnet name

Reciprocity mutual [ ———

2-Qut-Star ostar (2) <

Arc edges
2-In-Star istar(2)

Mixed-2-Star
(two-path)

L —
3-In-Star istar(3) é 3-Out-Star ostar(3) é

m2star

K-Out-Star ostar (k) é

Q JOHNS FIOPKINS - gee more network statistics: https://cran.r-project.ora/web/packages/ergm/vignettes/ergm.pdf

WHITING SCHOOI
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https://cran.r-project.org/web/packages/ergm/vignettes/ergm.pdf

ERGM Model

Let Y denote an 73 X 71 sociomatrix where y??j =1 if individuals y’ij = ?and J have a tie. Let X
denote a matrix of covariates, which includes structural measures of the network as well as nodal
and possibly edge-level attributes. A generic ERGM can be written as:

exp{0Tg(y. X)}
K(6,Y)

Pyy(Y =y|X) =

where B is a vector of coefficients, g(y: X) is a vector of sufficient statistics, YVis the space of
possible graphs, and H:(Ha y) is a normalizing constant. That is, it's the numerator summed across

all possible graphs y For even moderate-sized graphs, ’“‘3(93 y) can be enormous, so closed-form
solutions are unfeasible. The number of labeled, undirected graphs of 1 vertices is 2”(n_l)/2, which
can get big fast. For example, for a network of . > (, there are over two million undirected graphs,
which means that you would need to calculate the likelihood for each one of these in order to

compute K . This is generally not practical.

=X
QY JOHNS HOPKINS - bty //eehh-stanford.github.io/SNA-workshop/ergm-intro.html#what-is-an-ergm
of ENGINEERING
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https://eehh-stanford.github.io/SNA-workshop/ergm-intro.html#what-is-an-ergm

ERGM Model

Some Definitions and Notation

e Yijdenotes the ?’.7 th dyad in graph Y. If Yij = l, then 2 and j are connected by an edge, if
Yij = 0, they are not.

C ..
y’f':j is the status of all other pairs of vertices in ¥ other than (?’a j).

+
Yijis the same network as Y except that Yij = 1

Yij is the same network as Y except that Yij = 0

) — Y -
6(%:»?) is the change statistic 5(%3) o g(yij) g(y?{} ) This is a measure of how the graph
statistic g(y) changes if the ¢Jth vertex is toggled on or off.

The ergm equation can be re-written in terms of change statistics. The log-odds of a tie Yijis:

logit(Yi; = 1|y;;) = QT‘S(yij)

=X
QY JOHNS HOPKINS - bty //eehh-stanford.github.io/SNA-workshop/ergm-intro.html#what-is-an-ergm
of ENGINEERING
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Example of ERGM

= How reciprocal edges and number of edge influence guarantee network in

financial crisis and stimulus program?

g

HNS HOPKINS

WHITING SCHOOI
of ENGINEERINC
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Fig. 4 Dynamic changes of coefficients in ERGM. Source data are provided as a Source Data file.

Wang, Y., Zhang, Q., & Yang, X. (2020). Evolution of the Chinese guarantee network under financial crisis and stimulus

program. Nature Communications, 11(1), 2693.
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Extended ERGM family and other
Relevant Inference models

= Social selection: predict ties
= Social influence: predict attributes of nodes

Choosing the Right Network Model Framework

DV Unit  cross-sectional Longitudinal Events
Social QAP/ERGMs STERGMs REM
Selection RSIENA(SAOM)
D D O B ] B
T1 2
Social ALAAM RSIENA(SAOM) REM

AR DR i)ﬂﬁf’t

q JOHNS FIOPKINS - Eyample from: https://sonic.northwestern.edu/ 33
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Problem of ERGM family

—

= Not practical for a large graph (typically within 3k-5k nodes)

(another solution is Graph Neural Network)

~— [

= One solution is network sampling, sample a small graph from the large graph

Static graph patterns

Temporal graph patterns

in-deg | out-deg wce sce hops | sng-val | sng-vec | clust diam cc-sz | sng-val || clust AVG
RN 0.034 | 0.145 | 0.814 [0.193 | 0.231 | 0.079 0.112 | 0.327 || 0.074 | 0.570 | 0.263 | 0.37L || 0.272
RPN || 0.062 | 0.097 | 0.792 | 0.194 | 0.200 | 0.048 0.081 | 0.243 || 0.051 | 0.475 | 0.162 | 0.249 || 0.221
RDN || 0.110 | 0.128 | 0.818 | 0.193 | 0.238 | 0.041 0.048 | 0.256 || 0.052 | 0.440 | 0.097 || 0.242 || 0.222
RE 0.216 | 0.305 | 0.367 | 0.206 | 0.509 | 0.169 0.192 | 0.525 || 0.164 | 0.659 | 0.355 || 0.729 || 0.366
RNE || 0.277 | 0.404 | 0.390 | 0.224 | 0.702 | 0.255 0.273 | 0.709 || 0.370 | 0.771 | 0.215 || 0.733 || 0.444
HYB || 0.273 | 0.394 | 0.386 | 0.224 | 0.683 | 0.240 0.251 | 0.670 || 0.331 | 0.748 | 0.256 | 0.765 || 0.435
RNN || 0.179 | 0.014 | 0.581 | 0.206 | 0.252 | 0.060 0.255 | 0.398 || 0.058 | 0.463 | 0.200 || 0.433 || 0.258
RJ 0.132 | 0.151 | 0.771 | 0.215 | 0.264 | 0.076 0.143 | 0.235 || 0.122 | 0.492 | 0.161 | 0.214 || 0.248
RW || 0.082 | 0.131 | 0.685 | 0.194 | 0.243 | 0.049 | 0.033 | 0.243 || 0.036 | 0.423 | 0.086 || 0.224 || 0.202
FF 0.082 | 0.105 | 0.664 | 0.194 | 0.203 | 0.038 | 0.092 | 0.244 || 0.053 | 0.434 | 0.140 | 0.211 || 0.205

i.l'r JOHNS HOPKINS

WHITING
of ENGINEERIN:

SCHOOI
RINC

Table 1: Scale-down sampling criteria

. On average RW and FF perform best.

Leskovec, J., & Faloutsos, C. (2006, August). Sampling from large graphs. In Proceedings of the 12th ACM SIGKDD
international conference on Knowledge discovery and data mining (pp. 631-636).
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Call back

= Causal inference (Feb 14)
= How to conduct causal inference in network analysis?

How can we measure ATE without this
problem?

» Randomized control trial (RCT)

= More realistic scenario:
o We'll probably study effects of medicine on someone who is sick

o If we survey people, there still might be differences: lower income person may
not be able to afford medicine and may also have worse nutrition that leads to
more severe illness: income is a confounder (X)

» Instead of surveying people, we take a group of people and randomly assign them to
“treatment” or “control” group

JOE\‘}?J‘S" HO‘]V’}fllNS Stoltzfus, J. C. (2011). Logistic regression: a brief primer. Academic emergency medicine, 18(10), 1099-1104.
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Example 1: Simulation + Matching

y Total Trade Network 'Malchcd Set Removed i Private Trade Removed
3 3 . " * . S
£ R - ~
= Remove matched nodes and see f o] alflacettes ol tocscans
s =t *?A*A?E;E;I?E%%IT““I?

What happens 15:«5()I 1692 1704 17‘16‘ 1728 1740 Iw‘sz‘ I1764

Four-year Periods

Panel B.—Network size

Malfeasance and the Foundations for Global N -
Trade: The Structure of English Trade in g B &8s I;T? TR,
the East Indies, 1601-1833" L0 .l 5 S L P

Fouryear Periods

Nodes in Network Accounfed For
00 01 02 03 04 08

‘anel C.—Size of maximum bicomponent

Emily Erikson
University of Massachusetts, Amherst

Peter Bearman
Columbia Universily

00 02 04 06 08

E EIH :
i |:|D e.&.ﬁ:- EEEE?D$:’EE$D

Bicomponent Size Accounted For

T
1680 1692 1704 1716 1728 1740 1752 1764

Four-year Periods

F1c. 8.—Simulations of data presented in fig. 6

Panel E: 1760

F16. 4—Network visualizations of the EIC’s Eastern trade

Erikson, E., & Bearman, P. (2006). Malfeasance and the foundations for global trade: The structure of English trade in the

X JOHNS HOPKINS

WHITING SCHOOI

f ENGINEERING primer. Academic emergency medicine, 18(10), 1099-1104.

East Indies, 1601-1833. American Journal of Sociology, 112(1), 195-230., J. C. (2011). Logistic regression: a brief 36




Example 2: Experiment

Trial 1: 4/20 (20%)

Trial 2: 5/20 (25%)

= Recruit people and allocate them into 2| AR i | _JW/\,-»MN

5 15 25 35

different networks.

Trial 3: 4/21 (19%)

5 15 25 35
Rounds Played

Trial 4: 5/18 (28%)

1.004 1.00
0.75 0.75
0.50 0.50
0.25 0.25
H H H H H H 7 1 ‘-’M‘JA"’M
Experimental evidence for tipping points in social 000 000

5 15 25 35
Rounds Played

Trial 5: 6/29 (21%)

convention

5

=
I
[x]
o

Rounds Played
Trial 6: 8/26 (31%)

1.004 1.00
DAMON CENTOLA JOSHUA BECKER DEVON BRACKBILL , AND ANDREA BARONCHELLI Authors Info & Affiliations 0.751 0.75

0.50 0.50
SCIENCE - 8Jun2018 - Vol 360, Issue 6393 . pp 1116-1119 . DOl 10.1126/science aas3827 0.25 0.25

0.00- M 1 000 e : : ;
& 7545 995 A [ 5 15 25 35 45 5 15 25 35

Rounds Played
Trial 7: 5/126 (19%)

Rounds Played
Trial 8: 8/29 (28%)

1.004 1.00
0.75 0.75
0.50 0.50
0.25 0.25
0.00 Wﬁwﬂ_ﬂ_v 0.00 : . i .

5 15 25 35 45 55
Rounds Played

By JOHNS HOPKINS
I'E"J WHITING scHiool convention. Science, 360(6393), 1116-1119.

NEERING

5 15 25 35 45 55
Rounds Played

Centola, D., Becker, J., Brackbill, D., & Baronchelli, A. (2018). Experimental evidence for tipping points in social
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Call back: Large Graph Issue for ERGM

= Solution 1: Network sampling.

= Solution 2: Transform graph information to other data structures (e.g., node
embedding).

= Solution 3: Analyzing the graph at the local neural level and then aggregating the
neurons together (e.g., Graph Neural Network).

= These 3 solutions are actually intertwined in practice:

You can use network sampling methods (e.g., random walk) to calculate node
embeddings;

You can also use node embedding results as input for Graph Neural Networks (GNN).

=\ " - .

ayw JOHNS HOPKINS

Q|I" J WHITING SCHOOL 39
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Node Embedding

= Logic of Node Embedding

1. Define a function that maps node u, v to vectors zu, zv
2. Define a node similarity function for u, v

3. Optimize parameters so that: Embeddmg NOdeS

. . Goal: similarity(u,v) ~ z, z
similarity(u,v) =~ zlz, 3{{ ) = 2, 2y

Need to define!

. s By

X ENC(u)

U encpde nodes
/\

~~

.,
“p o

"ENC(v)

Input network d-dimensional
b embedding space

jOHNs Horkins  lustration graph from: https://cs.stanford.edu/people/jure/teaching.html
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Example: similarity based on random walks

= Given a random node u, predict its neighbor Nr(u), equivalently minimizing L.
= Intuition: Optimize embedding zu to max the likelihood of random walk co-occurrences.

1. Simulate many short random walks starting
from each node using a strategy R

2. For each node u, get N4(u) as a sequence of
nodes visited by random walks starting at u

Given a graph and a starting 3 : ’ |earn |tS embeddlng by

point, we salect a naighbor of predicting which nodes are in N 4(u):

it at random, and move to this i

neighbor; then we select a

neighbor of this point at £ S ; 10g (rU | zu ))
random, and move to it, etc.

The (random) sequence of

points visited this way is a UEV UENR(U)

random walk on the graph. Can efficiently approximate using negative sampling

jOHNS HOPKINS  Example from: https://cs.stanford.edu/people/jure/teaching.html 41


https://cs.stanford.edu/people/jure/teaching.html

Example: similarity based on random walks

= Given a random node u, predict its neighbor Nr(u), equivalently minimizing L.
= Intuition: Optimize embedding zu to max the likelihood of random walk co-occurrences.

= Use softmax to parameterize P(v|zu) (make v to be most similar to u).

[ exp(z,20)
YR | (D
uceyv ’UENR(U) \ZTLEV eXp(Zu Zn)
)

predicted probability of u
and v co-occuring on
random walk, i.e., use

softmax to parameterize

P(v|zy)

Random walk embeddings = z,, minimizing L

jOHNS HOPKINS  Example from: https://cs.stanford.edu/people/jure/teaching.html 42
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Recall negative sampling in word2vec

= Calculating L is expensive: pick random negative samples to normalize
= Negative sampling (Jan 31)

 ow(zln)

£= Z Z ~log (\ ZnEV exg(zlzn) )

ueVveNg(u)

Skip-gram: Negative sampling

‘ Encourage center word
predicted probability of u and context ward to
and v co-occuring on / have similar vectors
random walk, i.e., use VEXP(HO"?)
softmax to parameterize Li—1 exp(u; ve)
P(v|z,) Encourage center word

and all other words to
have different vectors

Random walk embeddings = z,, minimizing L

JOHNS HOPKINS ~ Example from: https://cs.stanford.edu/people/jure/teaching.html 43
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Recall negative sampling in word2vec

= Calculating L is expensive: pick random negative samples to normalize

= Negative sampling (Jan 31): Sample k negative nodes each with prob.
proportional to its degree (k=5~20)

= Gradient Descent to minimize L

Skip-gram: Negative sampling

‘;’i.-; JOHNS HOPKINS
4 WHITIN D01
of EN

Solution: Negative sampling (Mikolov et al., 2013)

exp(z,, zy)
log =
ZHGV exp(z, zn)

Encourage center word
and context word to 10g Z Z’U‘ Z 108; Z Zp,; )) ng ~ PV
/ have similar vectors /
_opovy) ~ \ random distribution
Y exp(uve) sigmoid function
over all nodes
Encourage center word
d all oth ds t - - . :
Byt bt tmctrs .e., instead of normalizing w.r.t. all nodes, just
normalize against k random negative samples
Example from: https://cs.stanford.edu/people/jure/teaching.html 44
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Call back Neural Network (Feb 14)

= Can we directly apply neural network to graph, taking adjacency matrix and network
metrics as input?

oa@’e : I%I =
o 4 I Two-layer Neural Network with scalar
E{ 0o 10 10 10 output
| —
= Issues with naive neural network Cutpat e JZ' = gf(lz)
Node order; Graph size change... .
Feature hidden units _
Engineering (0 node) L= ﬂgg:ixebar)
function, e.g. sigmoid,
Structured b retlam
Features ——
(vector)

'.I,r JOHNS HOPKINS
g WHITING SCHOOL 45
of ENGI ING




Graph Neural Network

= Logic of GNN
1) Network neighborhood defines a computation graph
2) Generate node embeddings/link messages based on local network neighborhoods

3) Aggregate information across layers
* Basic approach: Average neighbor messages

4) Train the neural network and apply a neural network
Initial O-th layer embeddings

average messages A RO — are equal to node features
_ v
TARGET NODE from ﬂelghbors .A‘ : .
hk—l
\ _0 hY =@ | Wil 3 N +BghE | ke {1, K}
................. ® ueN(v)
@ — h¥& \Average of neighbor’s
. . Z’U h’y 2 g
] previous layer embeddings
@ Non-linearit
INPUT GRAPH ’." a (e.g., ReLU)y

%W JOHNS HOPKINS . .
l'f"JO\\H(HS‘\L ( ° Example from: https://cs.stanford.edu/people/jure/teaching.html 46
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Graph Neural Network Training

I
Supervised Training Unsupervised Training
Directly train the model for a supervised task * Train in an unsupervised manner:
(e.g., node classification) = Use only the graph structure

Safe or toxic = “Similar” nodes have similar embeddings

Safe or toxic . . .
drug? drug? = .., = Unsupervised loss function can be anything

from the last section, e.g., a loss based on
= Random walks (node2vec, DeepWalk, struc2vec)
= Graph factorization

i o
J i . = Node proximity in the graph
-~ % E.g., a drug-drug
interaction network

i

Example from: https://cs.stanford.edu/people/jure/teaching.html 47
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Example 1: Predict Twitter (X) Interaction

= Dynamic GNN

TEMPORAL GRAPH NETWORKS FOR DEEP LEARNING
ON DYNAMIC GRAPHS

Emanuele Rossi* Ben Chamberlain Fabrizio Frasca
Twitter Twitter Twitter

Davide Eynard Federico Monti Michael Bronstein

Twitter Twitter Twitter

JOHNS HOPKINS

@ z1(t) z(t) ? p((1,2)[t1) f@>
| [ RGERLD M
/

Edge
Probabilities

Node Embeddings

Aggregated (Updated)
Messages Memory

Messages

Figure 1: Computations performed by TGN on a batch of time-stamped interactions. Top: embeddings
are produced by the embedding module using the temporal graph and the node’s memory (1). The
embeddings are then used to predict the batch interactions and compute the loss (2, 3). Bottom: these
same interactions are used to update the memory (4, 5, 6). This is a simplified flow of operations
which would prevent the training of all the modules in the bottom as they would not receiving a
gradient. Section 3.2 explains how to change the flow of operations to solve this problem and figure 2
shows the complete diagram.

Rossi, E., Chamberlain, B., Frasca, F., Eynard, D., Monti, F., & Bronstein, M. (2020). Temporal graph networks for deep

WHITING ScHoo! learning on dynamic graphs. arXiv preprint arXiv:2006.10637. 48



Example 2: GraphSAGE

= Heterogeneous Nodes and Edges

Inductive Representation Learning on Large Graphs

William L. Hamilton* Rex Ying* Jure Leskovec
wleif@stanford.edu rexying@stanford.edu Jjure@cs.stanford.edu

Department of Computer Science 1. Sample neighborhood 2. Aggregate feature information 3. Predict graph context and label

Stanford University from neighbors using aggregated information
Stanford, CA, 94305

Figure 1: Visual illustration of the GraphSAGE sample and aggregate approach.

— ~ Hamilton, W., Ying, Z., & Leskovec, J. (2017). Inductive representation learning on large graphs. Advances in neural
o JOHNS HOPKINS | . .
W WHITING ScHoo! information processing systems, 30.. 49



Issues with GNN

= Lost global information (Complex system studies are good at dealing with global info)

= Interpretability (Ongoing research)

Graph Neural Netwok
Explanations

Instance-level Model-level
Explanations Explanations
(Gradientleeatures) C Perturbations ) C Decomposition ) ( Surrogate ) ' Generation )

GNNExplainer

jsa [l Ay LRP GraphLime
Guided BP ZORRO R
Excitation BP RelEx XGNN
EL Ll GNN-LRP PGM-Explainer
Grad-CAM Causal Screening
SubgraphX

Fig. 1. An overview of our proposed taxonomy. We categorize existing GNN explanation approaches into two branches: instance-level methods
and model-level methods. For the instance-level methods, the gradients/features-based methods include SA [54], Guided BP [54], CAM [55], and
Grad-CAM [55]; the perturbation-based methods are GNNExplainer [46], PGExplainer [47], ZORRO [56], GraphMask [57], Causal Screening [58],
and SubgraphX [48]; the decomposition methods contains LRP [54], [59], Excitation BP [55] and GNN-LRP [60]; the surrogate methods include
GraphLime [61], RelEx [62], and PGM-Explainer [63]. For the model-level methods, the only existing approach is XGNN [45].

‘,UJOHNs Ho ’I\INS Yuan, H., Yu, H., Gui, S., & Ji, S. (2022). Explainability in graph neural networks: A taxonomic survey. IEEE transactions

N ENCINBERING. on pattern analysis and machine intelligence, 45(5), 5782-5799.
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Examples of complex system network
studies

= Watts, D. J,, & Strogatz, S. H. (1998). Collective dynamics of ‘small-world'networks.

nature, 393(6684), 440-442.

= Barabasi, A. L., & Albert, R. (1999). Emergence of scaling in random networks.
science, 286(5439), 509-512.

= Muscoloni, A., Thomas, J. M., Ciucci, S., Bianconi, G., & Cannistraci, C. V. (2017).
Machine learning meets complex networks via coalescent embedding in the
hyperbolic space. Nature communications, 8(1), 1615.

= Wang, D., & Barabasi, A. L. (2021). The science of science. Cambridge University
Press.

i.l'r JOHNS HOPKINS
4 WHITING SCHOOIL
NGINEER
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Recommended readings

= Grover, A., & Leskovec, J. (2016, August). node2vec: Scalable feature learning for
networks. In Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining (pp. 855-864).

= Xu, K., Hu, W,, Leskovec, J., & Jegelka, S. (2018). How powerful are graph neural
networks?. arXiv preprint arXiv:1810.00826.

= Yuan, H., Yu, H,, Gui, S., & Ji, S. (2022). Explainability in graph neural networks: A
taxonomic survey. IEEE transactions on pattern analysis and machine intelligence,
45(5), 5782-5799.

Qi,lyr JOHNS HOPKINS
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