

Language Models: Background

Overview

- N-gram language models
- Evaluation
- Neural language models
- Pre-trained language models

N-Gram Language Models

Probabilistic Language Models

- Goal: Assign a probability to a sentence
- Why?
 - Machine Translation
 - P(high winds tonight) > P(large winds tonight)
 - Spell Correction
 - P(about fifteen minutes from) > P(about fifteen minuets from)
 - Speech Recognition
 - P(I saw a van) >> P(eyes awe of an)
 - + many other tasks

Probabilistic Language Model

- Goal: compute the probability of a sentence or sequence of words:

 P(W) = P(w₁, w₂, w₃, w₄, w₅ ... w_n)
- Related task: probability of an upcoming word:

 P(w₅|w₁, w₂, w₃, w₄)
- A model that computes either of these:
 - P(W) or $P(w_n|w_1, w_2, w_3, ..., w_{n-1})$ is called a language model.

How to compute P(W)

- How to compute this joint probability:
 P(its, water, is, so, transparent, that)
- Intuition: let's rely on the Chain Rule of Probability

How to compute P(W)

- Recall the definition of conditional probabilities • $P(B|A) = \frac{P(A,B)}{P(A)}$ Rewriting: P(A,B) = P(A)P(B|A)
- The Chain Rule in General

• $P(x_1, x_2, x_3, ..., x_n) = P(x_1)P(x_2|x_1)P(x_3|x_1, x_2) ... P(x_n|x_1 ... x_{n=1})$

The Chain Rule applied to compute joint probability of words in sentence

$$P(w_1, w_2, ..., w_n) = \prod P(w_i | w_1 w_2 ... w_{i-1})$$

- P("its water is so transparent") = P(its) × P(water|its) × P(is|its water) × P(so|its water is) × P(transparent|its water is so)
- How do we estimate these probabilities?

How to estimate these probabilities?

• Try 1: count and divide?

 $\circ P(transparent | its water is so) = \frac{Count(its water is so transparent)}{Count(its water is so)}$

- Too many possible sentences!
- We'll never see enough data for estimating these

Markov Assumption

• Simplifying assumption:

• $P(transparent | its water is so) \approx P(transparent | its water)$

- More generally: • $P(w_1, w_2, ..., w_n) \approx \prod_i P(w_i | w_{i-k} ... w_{i-1})$
- Unigram model: $P(w_1, w_2, ..., w_n) \approx \prod_i P(w_i)$
- Bigram model: $P(w_1, w_2, ..., w_n) \approx \prod_i P(w_i | w_{i-1})$
- Trigram, 4-gram, 5-gram etc.
 - In general, this is insufficient since language has long-term dependencies, but we can often get away with it

Estimating bi-gram probabilities

- Bigram model: $P(w_1, w_2, ..., w_n) \approx \prod_i P(w_i | w_{i-1})$
- Maximum likelihood estimate

 $\circ P(w_i|w_{i-1}) = \frac{count(w_{i-1},w_i)}{count(w_{i-1})}$

<s> I am Sam </s> <s> Sam I am </s> <s> I do not like green eggs and ham </s>

$$P(I | < s >) = \frac{2}{3} = .67 \qquad P(Sam | < s >) = \frac{1}{3} = .33 \qquad P(am | I) = \frac{2}{3} = .67$$
$$P(| Sam) = \frac{1}{2} = 0.5 \qquad P(Sam | am) = \frac{1}{2} = .5 \qquad P(do | I) = \frac{1}{3} = .33$$

Practical considerations

- Typically put everything into log space (avoid underflow and adding is faster than multiplying)
- What do we do about rare words? We might have word combinations we never saw in the training set (that we used to estimate probabilities)
 - Smoothing, backoff, interpolation
- There can be LOTS of n-grams
 - Pruning (only store probabilities for frequent ones)
 - Efficient data structures

Evaluation

Extrinsic (in-vivo) Evaluation

- To compare models A and B:
 - Put each model in a real task: Machine Translation, speech recognition, etc.
 - Run the task, get a score for A and for B
 - How many words translated correctly
 - How many words transcribed correctly
 - Compare accuracy for A and B
- Disadvantages:
 - Expensive, time-consuming
 - Doesn't always generalize to other applications

Intrinsic (in-vitro) evaluation

- Perplexity
 - Directly measures language model performance at predicting words
 - Single general metric for language models
 - Doesn't necessarily correspond with real application performance
 - Useful for large language models (LLMs) as well as n-grams
- Data setup:
 - Train model (e.g. estimate probabilities) on training set
 - Compute perplexity on held-out test set

Perplexity: Intuition

- A good LM is one that assigns a higher probability to the next word that actually occurs
- "Its water is so _____"
 - Model A: transparent: 0.3, blue: 0.3, orange: 0.01, red: 0.02
 - Model B: transparent: 0.01, blue: 0.01, orange: 0.01, red: 0.9
- Generalize to all words: best LM assigns high probability to the entire test set
- When comparing two LMs, A and B
 - \circ We compute P_A(test set) and P_B(test set)
 - The better LM will give a higher probability to (=be less surprised by) the test set than the other LM

- Probability depends on size of test set
 - Probability gets smaller the longer the text
 - Better: a metric that is **per-word**, normalized by length
- Perplexity is the inverse probability of the test set, normalized by the number of words

$$PP(W) = P(w_1 w_2 ... w_N)^{-\frac{1}{N}}$$

$$= \sqrt[N]{\frac{1}{P(w_1 w_2 \dots w_N)}}$$

Perplexity is the inverse probability of the test set, normalized by the number of words

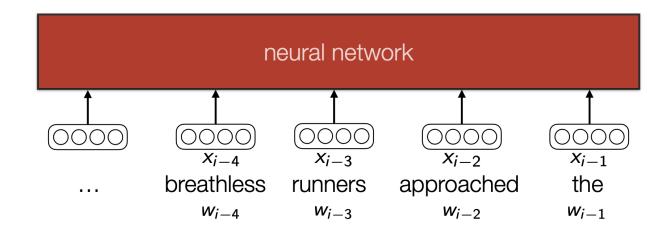
$$PP(W) = P(w_1 w_2 ... w_N)^{-\frac{1}{N}}$$

$$= \sqrt[N]{\frac{1}{P(w_1w_2...w_N)}}$$

(The inverse comes from the original definition of perplexity from cross-entropy rate in information theory) Probability range is [0,1], perplexity range is [1,∞] **Minimizing perplexity is the same as maximizing probability**

Perplexity for a bigram model

$$PP(W) = \sqrt[N]{\prod_{i=1}^{N} \frac{1}{P(w_i | w_{i-1})}}$$



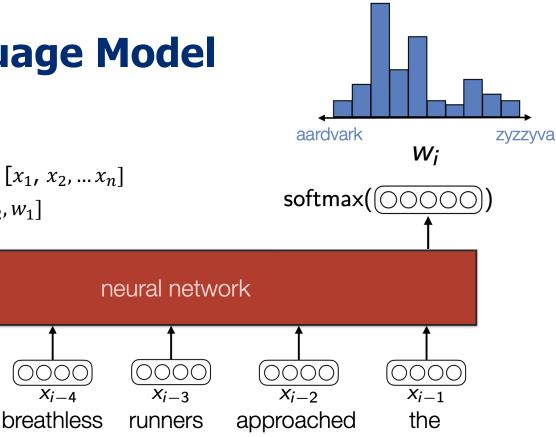
Neural Language Models

Neural Language Model

- Don't count, predict
- Input: word embeddings [x₁, x₂, ... x_n]

Neural Language Model

()(X_{i-4}


 W_{i-4}

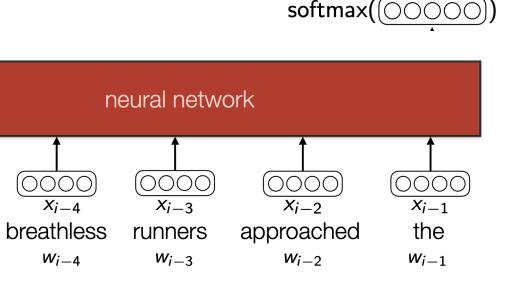
 W_{i-3}

- Don't count, predict
- Input: word embeddings $[x_1, x_2, \dots x_n]$

. . .

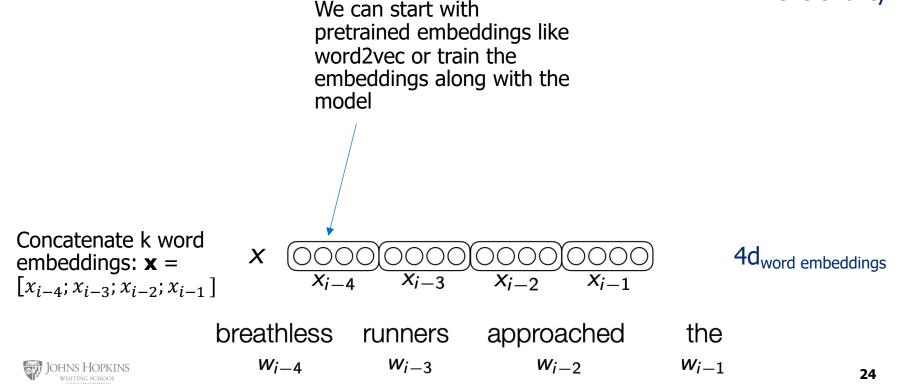
• Output: $P(w_i, w_{i-1}, ..., w_2, w_1]$

 W_{i-2}

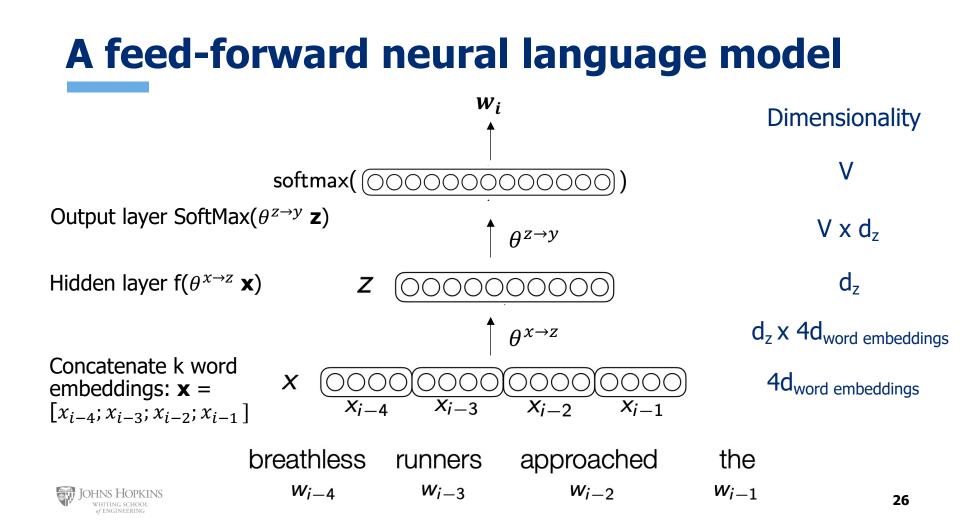

 W_{i-1}

A feed-forward neural language model

- We can't handle variable sized inputs or very long sequences
- Fix size of previous context (e.g. k=4)

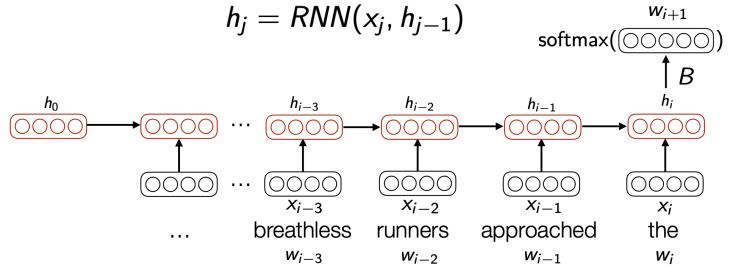

Wi


A feed-forward neural language model


Dimensionality

A feed-forward neural language model

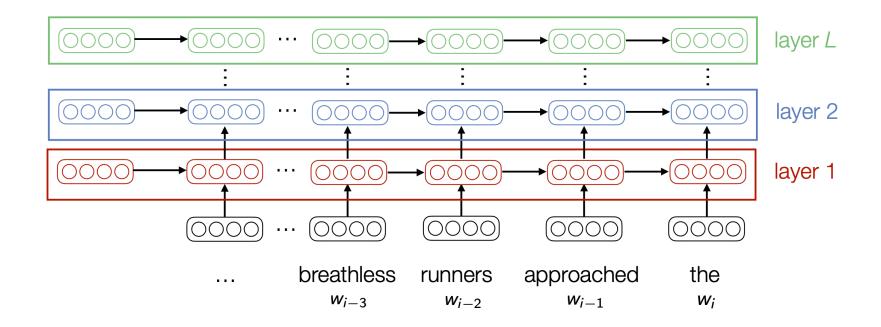
Dimensionality


Comparison with n-gram language model

- Improvements:
 - Model size: O(V) instead of O(Vⁿ)
 - Lack of sparsity
 - Sharing of representations across words
- Remaining challenges:
 - We still need to truncate context; model size grows linearly with context size
 - Model weights are shared across words (each x_i uses different rows of $\theta^{x \to z}$)

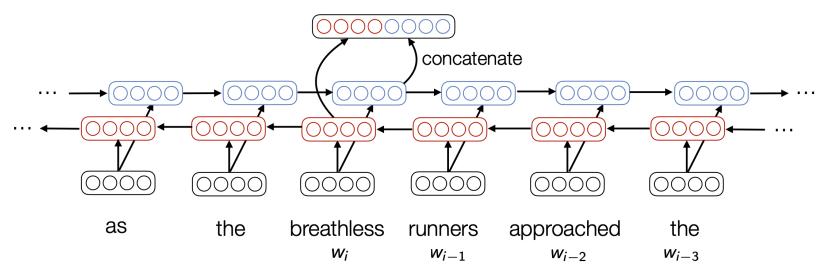
Solutions: *Recurrent* neural network

- Maintain a context vector, h. At each timestep (w_i), compose the context with the
- current word x_i to create a new context for the next timestep:



Training tricks

- Same problem with word embeddings, softmax over the vocabulary is expensive \rightarrow hierarchical softmax
- In theory, we can propagate information over arbitrarily long context → in practice gradient can vanish or explode → gradient clipping, gating mechanisms
- Overfitting → dropout and regularization
- Other architectures:
 - Long short term memory (LSTM)


Stacking RNNs

Bidirectional RNNs

- In language it's often useful to model past and future context
- We can run an RNN in the opposite direction (reverse reading order)
- Combining forwards and backwards directions works best

Break

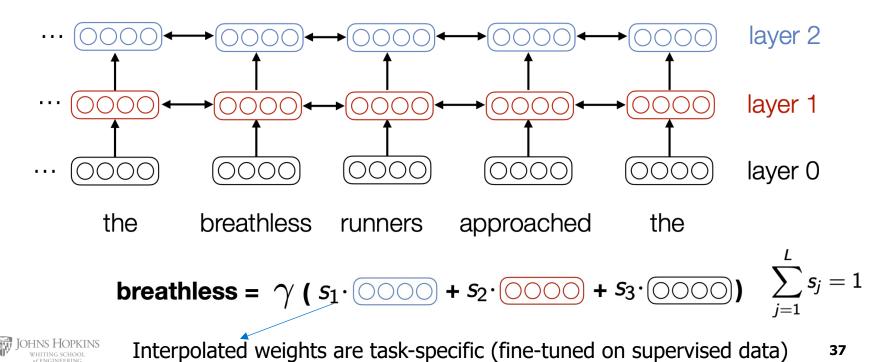
Pre-trained Language Models

Recall: Word Embeddings

- Key idea: pre-train word embeddings with a self-supervised objective (e.g. CBOW or skip-gram in word2vec)
- Incorporate pre-trained word embeddings into task-specific models
- Problem:
 - Single embedding representation for each word

Recall: Word Embeddings

- "the new-look **play** area is due to be completed by early spring 2020"
- "gerrymandered congressional districts favor representatives who play to the party base"
- "the freshman then completed the three-point **play** for a 66-63 lead"
- Multiple senses get entangled
- Nearest neighbors:
 - playing played Play
 - game plays football
 - o games player multiplayer


Contextualized Representations

- Preferred approach: *contextualized* representations where the embedding changes with context
- [But still want to leverage self-supervised training on large data]
- ELMo ("Embeddings from Language Model")
 - Use hidden representation from language model
 - (keep middle layers instead of only the embedding layer)

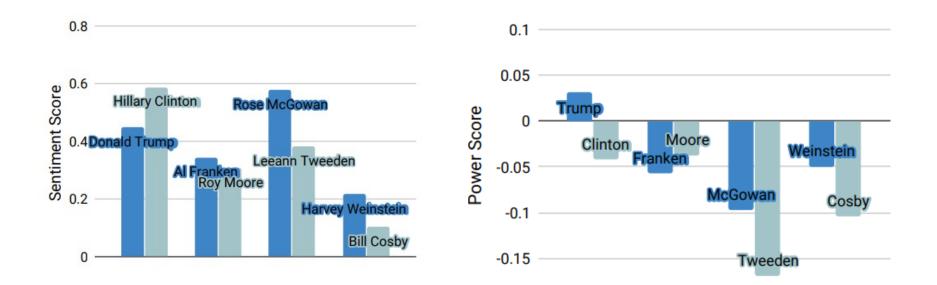
ELMo: Deep contextualized word embeddings

Stacked bi-directional LSTM

ELMo: Deep contextualized word embeddings

 Adding ELMo to existing state-of-the-art models provides significant improvement on essentially all NLP tasks.

	TASK	PREVIOUS SOTA		OUR BASELINE	ELMO + BASELINE	INCREASE (ABSOLUTE/ RELATIVE)
question answering	SQuAD	Liu et al. (2017)	84.4	81.1	85.8	4.7 / 24.9%
natural language inference	SNLI	Chen et al. (2017)	88.6	88.0	88.7 ± 0.17	0.7 / 5.8%
semantic role labeling	SRL	He et al. (2017)	81.7	81.4	84.6	3.2 / 17.2%
coreference	Coref	Lee et al. (2017)	67.2	67.2	70.4	3.2 / 9.8%
named entity recognition	NER	Peters et al. (2017)	91.93 ± 0.19	90.15	92.22 ± 0.10	2.06 / 21%
sentiment analysis	SST-5	McCann et al. (2017)	53.7	51.4	54.7 ± 0.5	3.3 / 6.8%


How is ELMo useful for social text processing?

- Higher-performance for supervised learning

 [Mostly eclipsed by future models]
- Adding context to lexicons:
 - "The hero deserves appellation"
 - "The boy **deserves** punishment"

Contextual Affective Analysis: A Case Study of People Portrayals in Online #MeToo Stories

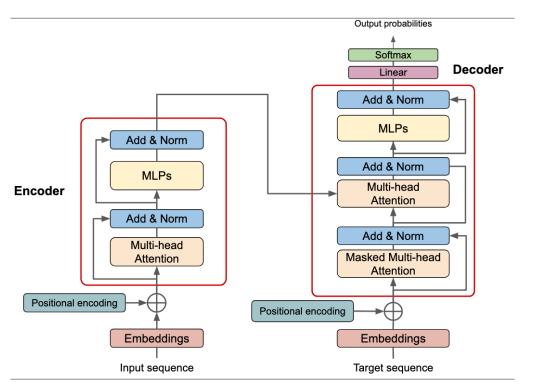
^{WINS HOPKINS} ^{WHITING SCHOOL} ^{WHITING SCHOOL} ^{WHITING SCHOOL} ^{WHITING SCHOOL} ^{Online} #MeToo Stories" ICWSM (2019) ⁴⁰

How is ELMo useful for social text processing?

- Higher-performance for supervised learning

 [Mostly eclipsed by future models]
- Adding context to lexicons:
 - "The hero deserves appellation"
 - "The boy deserves punishment"
- Word embeddings analyses?

$ELMo \rightarrow BERT$



- Key differences:
 - BiLSTM -> Transformer
 - Treat layers as static embeddings → keep entire model and update it during taskspecific training
 - \circ Next token prediction \rightarrow Masked Language Modeling training objective

The Transformer

- Stacks of transformer blocks, each of which is a multilayer network that maps sequences of input vectors (x₁,..., x_n) to sequences of output vectors (z₁,..., z_n) of the same length
- Blocks are made by combining self-attention layers, simple linear layers, feedforward networks, and self-attention layers (the key innovation of transformers)

Recap

- N-gram language models
- Evaluation
- Neural language models
- Pre-trained language models (ELMo→BERT)

Next Class

- Guest Lecture: Hahrie Han
- Professor of Political Science
- Director of the Agora Institute
- Research Interests: Civic and political participation, collective action, organizing, and social change, focusing particularly on the role of civic associations
- Title: "Mapping the Modern Agora and Other Applications to Dilemmas in Democracy"

Acknowledgements

Slide thanks to Jurafsky&Martin and Strubell&Tsvetkov

